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Computation of Absorption Corrections on EDSAC II

By M. WELLs
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 15 December 1959)

Programs are described for the computation of absorption corrections for single-crirst,a,l specimens
of arbitrary shape; the programs have been applied to Weissenberg and Precession camera data and
allow the specimen to be mounted in an absorbing cylindrical container. o

1. Introduction

The need for accurate absorption corrections has long
been realized and various authors in the past have
described methods for dealing with weakly absorbing
specimens (Frasson & Bezzi, 1959) or for evaluating
corrections by hand computation (Rogers & Moffett,
1956; Albrecht, 1939). This paper deals solely with
the methods used when a large high-speed computer
is available and is an extension of the work of Busing
& Levy (1957). The basis of the method is exactly as
described in their work, with some minor modifica-
tions occasioned by the particular computer for which
the programs were originally prepared. Only those
arguments are described which lead to the determina-
tion of the direction cosines of the incident and
emergent rays for different camera geometries, and the
extension of the method to include cases where the
specimen is mounted inside an absorbing cylindrical
container, possibly with absorbing liquid trapped
between one face of the crystal and the inner wall of
the container.

2. Some basic reciprocal-lattice geometry

The problem is the determination of the direction
cosines of the incident and reflected rays in some
convenient axial set to which the crystal shape is also
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Fig. 1. Stereogram showing the relationship of the axes XYZ
to the reciprocal lattice axes,

referred. We first define a right-handed orthogonal set
of axes XYZ such that OX is coincident with a*,
OY lies in the a*b* plane and c* lies on the same side
of OZ as the Y axis; in order to achieve this we may
find it necessary to rename our crystallographic axes.

We shall find it convenient to work in terms of a
number of intermediate angles ®, and lengths in
reciprocal space L, because any singularities in the
behaviour of these intermediate variables can be
detected in the course of the program by the com-
puter which can then prevent anomalous results being
produced. The angles w; are measured apti-clockwise
when viewed down OZ unless a statement to the
contrary is made; lengths L are positive and square
roots are taken as positive. Unless an explicit formula

is given for a {zg;}w, it is to be assumed that the

{ oo } ( { sin }2 >%
w; = (1= ", wi

cos sin

is used.

The stereogram Fig. 1 shows the two sets of axes,
a*b*c* and X YZ; in the figure all three reciprocal
lattice axes are in the first quadrant but this is not
essential. The angle w; is given by

expression

cos w1 = (cos o* —cos §* cos p*)/(sin f* sin y*) .
We can use the complement of w; in a*c*Z to determine

cos wz = sin w; sin f*
and hence
cos w3 = cos f*/sin ws .

For sin wz to be zero we see that f* = }m in which
case the expression for cos ws is indeterminate; such
indeterminacy can readily be detected and the values
cos wa=1, sin ws=0 substituted by the program.

The fact that cos ws, sin ws and sin w3 are all posi-
tive means that ¢* must lie in the first or second
quadrant.

Fig. 2 shows the reciprocal-lattice point kI, P and
the two angles we, w7 which specify the direction of
the line joining P to the origin of the reciprocal lattice;
this line is of course normal to the reflecting planes
of which P is the representative point.

The length L; gives the distance from the Z-axis
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Fig. 2. The reciprocal lattice showing the angles and lengths
referred to in section 2 of the text.

at which the c*-axis intersects the Ith layer of the
reciprocal lattice and is given by
Li=Ic*sin ws .

The length L gives OP’, the distance from the origin
to the point Ak0 and has the value

Lo={(ha*)2+ (kb*)2 + 2(ha*) (kb*) cos y*}}.
Using Lo and the quantities
ON' = ha*
N'N = kb* cos y*
NP’ = kb* sin p*
we can evaluate w4 in the range 0 < w4 <27 from
cos wa=(ha*+ kb* cos y*)/La
sin wq4=kb* sin y*/Lz .
The angle ws is found from

w3+ ws=7+wa
so that
COS (5= — COS (W4 COS w3 — SN w4 sin w3

and this leads us to the value of L3, given by
Ly={L}+ L3—2L,Ls cos ws}i.

The length of the line joining P to the origin is 2sin6
where

2sin 6 = {(ha*)2+ (kb*)2+ (Ic*)2+ 2(kb*) (Ic*) cos a*
+2(ha*) (lc*) cos f* +2(ha*) (kb*) cos y*}#

and we can thus determine we in the range 0 <wg <in
from
sin we=L3/2 sin 6;

we can also determine w7, in the range 0 < w7<2n
from

sin w7= (L1 sin ws+ Lz sin w4)/L3

cos w7 = (L1 cos ws+ Lg cos wa)/Ls
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and we have thus located the normal to the reflecting
plane by a point in the upper hemisphere of our
stereogram.

In the next three sections we proceed to determine
the direction cosines of the incident and reflected rays
for three widely used camera geometries. We do this
by consideration of the physical conditions these rays
must satisfy; two conditions which must always be
satisfied are:

(1) The incident ray I, the normal to the reflecting
plane P, and the reflected ray E are coplanar and
so will always lie on a great circle.

(2) The angles P"I and P"R will always be equal
to 4m—6 so that I and R will lie on a small
circle of radius 3z—0 about P.

These two conditions alone are insufficient to deter-
mine the directions of the rays, and a third condition
is always introduced by the particular type of camera
in use, as described below.

3a. The equi-inclination camera

The extra condition in this case is that the angles
Z"I and Z"R are equal, being in fact jw—p where
4 is the equi-inclination angle; this condition implies
that I and R lie on a small circle of radius {m—u
about Z, as shown in Fig. 3(a).

X

Fig. 3(a). The reflection geometry of the equi-inclination
Weissenberg camera.

This, and the obvious symmetry of Fig. 3(a) such
that the angle ZPR=ZPI=4n enable us to solve for

ws=Z"I=Z"R in the range O <ws < 37
from
cOS ws = €Os wg sin §;

and we can then use this to solve for ws, again in the
range 0 <wy < }7, from

€os wy = (sin § — cos we cos ws)/(sin ws sin ws) .

We are now in a position to write down the direction
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cosines of the incident and reflected rays which will
be given by the following scheme:

cos X" I = sin ws {cos (w7 —ws)}

= sin ws (oS w7 cos wy+sin w7 sin wo)
cos Y"1 = sin ws {cos (}n—w7r—ws)}

= sin ws (sin w7 cos we— cos w- sin ws)
cos Z~I = cos ws

= COS Ws
cos X" R = sin ws {cos (w7+ws)}

= sin ws (COS w7 €OS w9 —sin w- sin ws)
cos YR = sin ws {cos (w7 +ws— )}

= sin ws (sin w7 cos we+ cos wr sin wse)
cos Z"R = cosws

= oS ws

3b. The normal-beam camera

The extra condition now is that the incident ray is
always normal to OZ i.e. it lies on the primitive circle
of the stereogram ; there are now two possible positions
for the incident ray, denoted by I,I’ in Fig. 3(b),
corresponding to reflections to the left and right hand
side of the incident ray respectively (that is when
viewed looking towards the source). The other pos-
sibility is that there are no intersections of the small
circle and the primitive circle; this corresponds to a
reflection which does not appear on a normal beam
photograph.

Fig. 3(b). The reflection geometry of the normal
beam camera.

The angle IZP (which is not, in general, equal to
RZP) is given by

€0s we =sin O/sin we

and this will be greater than 1 if no reflection is pos-
sible; this can be detected by the computer and
appropriate action taken. The two sets of direction
cosines for the incident beams I,I’ are found from
w7t wy to be
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cos X~ Y = cos (w7 —cws)
€OS (7 COS Wy +SIin w7 Sin we

A .
cos Y'I = sin (w7—ws)
= sin w7 €OS wy— COS Wy Sin Wy
cos Z°1 =0

=0

with corresponding expressions for I’ obtained by
reversing the sign of w.
The angle at P in the triangle IPZ is given by

cos P=tan 0 cot we= (sin 6 cos ws)/(cos O sin we)

and we can use the supplement of this angle in ZPR
to evaluate ws in the range 0 <ws < 47 from

A
cos wg = cos ws sin 0+ sin we cos 6 cos P
ie.
cos wg=2 cos wgsin 6 .

This result will apply to both of the reflected beams
and for a given value of 7 is independent of §, which
we know to be the case; it is as convenient however
to evaluate it afresh for each reflection. We can now

solve for the angle PZR from
cos Z= (sin B — cos we cos ws)/(sin we sin ws) .

Now, from the values of w7 + Z we can form the direc-
tion cosines scheme for R and R':

A
cos X" R = sin ws {cos (wr+2)}
A A
= sin ws (cOs w7 cos Z—sin w- sin Z)

A
cos Y™ R = sin ws {cos (wr+Z— )}
fad A
= sin ws (sin w7 cos Z+ cos w- sin Z)

cos Z"R = cos ws
= COS ws

with a corresponding set for R’ found by reversing
the sign of Z.

The two positions for reflection correspond to two
different spots on the film, or two different positions
of the crystal and counter, and the absorption correc-
tions for the two must be evaluated separately.

3c. The precession camera

The extra condition for the precession camera is that

the incident beam lies on a small circle of radius u,

the precession angle, drawn about Z the projection

axis, as is shown in Fig. 3(c). It is also apparent from

this that the anti-equi-inclination arrangement is a

special case of the precession camera arrangement.
We can evaluate cos wyo from

cos w10 = (sin f — cos we cos u)/(sin ws sin p) .

This may be greater than unity in certain situations
corresponding to non-existent reflections; as before we
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Fig. 3(c). The reflection geometry of the precession camera.

can detect these cases and prevent the production of
‘corrections’ for impossible reflections.

The use of w7+ wio enables us to evaluate the
direction cosines of the incident rays I and Ip;
obviously

cos Z"Iy = cos Z" I = cos u
and so
cos X" I = sin p {cos (w7+w1o)}
= sin u (cos w7 cos wig—sin wr sin wie)
cos Y™ I, = sin pu {cos (37— w7+ wio)}
= sin u (sin w7 €os w10+ cos w7 sin wio)
cos Z7 I, = cos K
= cos u
with a similar set for Iz found by reversing the sign
of w10.
To determine the direction cosines of the reflected

rays we proceed by evaluating the direction cosines
of the reciprocal lattice point P:

cos X~ P=cos ws=sin ws cos wz
A . .
cos Y P =cos wyg=sin we sin ws .

Using these we can find the angles w11, w1z in Fig. 3(c);

cos w11 =(cos X" I;—sin § cos ws)/(cos 8 sin ws)
cos wiz=(cos ¥ "I —sin 0 cos ws)/(cos 8 sin wo) .

The supplements of these angles lead to an expression

cos X" E1=cos ws sin 6 —sin ws cos § cos w11
- A
=2 cos wg sin § —cos X I

and similar reasoning gives the scheme below for the
direction cosines:

cos X" E1=2 cos ws sin § —cos X" I,
cos Y E1=2 cos we sin §—cos Y I
cos Z"E1= —(1—cos? X" E;—cos? X~ E)?

with a similar set for the emergent ray.
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These two sets of incident and reflected rays cor-
respond now to the same reflection on the film, and
the true correction to be applied is the arithmetic
mean of the two separate corrections.

4. The effect of absorbing specimen containers

If the specimen is mounted at the centre of a cylin-
drical container of dimensions large compared with
those of the specimen then the effect of absorption
in the container will be independent of position in
reciprocal space and so for many purposes can be
ignored.

A more usual situation is shown in Fig. 4, where the
specimen is not at the centre of the container, and
occupies an appreciable fraction of the total volume;
in this case absorption by the container produces
effects which depend on the direction of the reflection.

Suppose 1o is a point on the axis of the cylinder,
whose direction is specified by a unit vector t; the
equation to the surface of the cylinder is

{(r—ro).t}2+a2=(r—ro)?,

where a is the radius of the cylinder.

Fig. 4. Cross section of a crystal in an absorbing cylindrical
container, with absorbing liquid between the face 4B and
the container.

A ray along the direction s through a point r;
within the specimen is

r—ri==ks
and will intersect the cylinder at points where
{(ks +r1—r0).t}2+a?= (ks +r1—ro)2.
This is a quadratic in k;
k2{(s.t)2—1}+2k{s . t(r; — o).t — (r1—To).S}
+{(r1—r0).t}2— (r1—ro)2+a2=0 .

There are two solutions to this equation, one with %
negative, corresponding to the intersection of the
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continuation of the ray and the cylinder as at @ in
TFig. 4, and one with & positive; it is in this solution
that we are interested. The actual path length of the
ray within the container will be given by the dif-
ference between the two positive roots of the equations
using the inner and outer radius; thus if

X = (s.t)2-1
Y = {s.t(rl-—ro).t—(rl—ro).s}
Aio = {(r1—To).t)2—(r1—ro)2+0f,

the path length will be
ko—ki={(Y2—A,X)} —(Y2— A X)}}/X .

If there is an absorbing liquid trapped between one
face of the specimen and the inner wall of the container
then it becomes necessary to evaluate k; and to sub-
tract from this the path length within the crystal to
the face to give the path length within the liquid;
this need only be done for those rays which enter or
leave by the face AB.

5. Discussion

The programs described above are all used to compute
approximations to the value of the absorption correc-
tion by evaluating a weighted sum; it is of interest
to know how accurate the approximation is and under
what circumstances the method will fail.

The accuracy will naturally depend on how many
sampling points are used, and it is perhaps worth
noting that there are no limits to the accuracy other
than those imposed by purely practical considerations
—how long the computation would take and, more
important, how accurately the size and shape of the
crystal can be described. One limitation is that the
crystal may not have re-entrant angles if the method
of Busing & Levy is used for determining path lengths
within the specimen. It has been found empirically
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that by taking the integer next above 4 ut. in a given
direction as the number of sampling points in that
direction results are produced which agree to within
ca. 39% of the true value, which can be evaluated
analytically for certain special cases; this rule ob-
viously fails where ut.<0-125! The relative values of
the corrections will, in general, be more accurate than
their absolute values and except in work where ab-
solute intensities are required it is the relative values
which are important. A further check on accuracy
has been made by measuring the changes in intensity
when a crystal is rotated about the normal to the
reflecting plane and comparing these with the changes
in absorption correction; this work, carried out by
Dr D. C. Phillips at the Royal Institution, is to form
part of a separate publication.

The time per reflection increases approximately
linearly with the product of the number of sampling
points and the number of faces. A typical case, for
660 reflections, with 120 sampling points in a crystal
with 6 faces, required 40 min. computer time.

I should like to thank Dr M. V. Wilkes of the
Cambridge University Mathematical Laboratory for
provision of computing facilities; Dr Wilkes has given
permission for members of other laboratories to use
EDSAC 1II for computing absorption corrections if
they so desire and anyone wishing to avail himself
of this offer should in the first instance write to me.

I am grateful to D.S.I.R. and the Royal Commis-
sion for the Exhibition of 1851 for financial support.
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