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Programs are described for the computation of absorption corrections for single-crystal specimens 
of arbi t rary shape; the programs have been applied to Weissenberg and Precession camera data  and 
allow the specimen to be mounted in an absorbing cylindrical container. 

1. Introduction 

The need for accurate  absorpt ion corrections has long 
been realized and various authors  in the  pas t  have 
described methods for dealing with weakly  absorbing 
specimens (Frasson & Bezzi, 1959) or for evaluat ing 
corrections by  hand  computa t ion  (Rogers & Moffett,  
1956; Albrecht,  1939). This paper  deals solely with 
the methods used when a large high-speed computer  
is available and is an extension of the work of Busing 
& Levy (1957). The basis of the method  is exact ly  as 
described in their  work, with some minor modifica- 
tions occasioned by  the par t icular  computer  for which 
the programs were originally prepared.  Only those 
arguments  are described which lead to the determina-  
tion of the  direction cosines of the  incident and 
emergent  rays  for different camera geometries, and the  
extension of the  method  to include cases where the  
specimen is mounted  inside an absorbing cylindrical 
container,  possibly with absorbing liquid t rapped  
between one face of the crystal  and the inner wall of 
the  container. 

2. S o m e  basic  reciprocal- lat t ice  ~eometry  

The problem is the  determinat ion of the direction 
cosines of the  incident and  reflected rays  in some 
convenient axial  set to which the  crystal  shape is also 
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Fig. 1. Stereogram showing the relationship of the axes X YZ 
to the reciprocal lattice axes. 

referred. We first define a r ight -handed orthogonal  set 
of axes X YZ such tha t  OX is coincident wi th  a*, 
0 Y lies in the a'b* plane and c* lies on the  same side 
of OZ as the Y axis;  in order to achieve this we m a y  
find it necessary to rename our crystal lographic axes. 

We shall find it convenient to work in terms of a 
number  of in termediate  angles o~, and lengths in 
reciprocal space L, because any  singularities in the  
behaviour of these in termediate  variables can be 
detected in the  course of the program by the com- 
puter  which can then prevent  anomalous results being 
produced. The angles w, are measured alati-clockwise 
when viewed down OZ unless a s t a tement  to the  
cont rary  is made ;  lengths L are positive and square 
roots are t aken  as positive. Unless an explicit formula 

{s in~  
is given for a cos]  o~i it is to be assumed t h a t  the  

expression 

{} sin cos 2w~ 
cos o~ = 1 -  sin 

is used. 
The stereogram Fig. 1 shows the two sets of axes, 

a*b*c* and X YZ; in the figure all three reciprocal 
latt ice axes are in the first quadran t  but  this is not  
essential. The angle (ol is given by 

cos ~1 = (cos ~x* - cos fl* cos ),*)/(sin fl* sin ),*) . 

We can use the complement  of ml in a*c*Z to determine 

cos me = sin o~1 sin fl* 
and hence 

cos o)8 = cos fl*/sin o~2. 

For  sin e)2 to be zero we see t ha t  fl* = ½:~ in which 
case the expression ~or cos ms is indeterminate; such 
indeterminacy can readily be detected and the  values 
cos w s =  1, sin w s =  0 subst i tu ted by  the  program.  

The fact  t ha t  cos w2, sin ~o2 and sin w3 are all posi- 
t ive means t ha t  c* must  lie in the  first  or second 
quadrant .  

Fig. 2 shows the  reciprocal-lattice point  hkl, P and 
the two angles w6, co7 which specify the direction of 
the line joining P to the origin of the reciprocal lat t ice ; 
this line is of course normal  to the  reflecting planes 
of which P is the  representat ive point. 

The length L1 gives the distance from the Z-axis  
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Fig. 2. The reciprocal lattice showing the angles and lengths 
referred to in section 2 of the text. 

a t  which the  c*-axis intersects the  / th layer of the 
reciprocal lat t ice and is given by 

L1 = lc* sin 0)~. 

The length L2 gives OP', the  distance from the origin 
to the  point  hkO and has the  value 

L2 = {(ha*) 2 + (kb*) 9 + 2(ha*) (kb*) cos ?*}½. 

Using Lg. an~d the quant i t ies  

ON'  = ha* 

N ' N  = kb* cos y* 

N P '  = kb* sin ?* 

we can evaluate  094 in the  range 0 _< 094 < 2~ from 

cos (04 = (ha* + kb* cos ~,*)/Lg. 

sin 0)a = kb* sin ~,*/L2 . 

The angle w5 is found from 

( 2 ) 3 + 0 ) 5 = 2 " / 7 + 0 9 4  

so t h a t  
COS 095 ----- - -  COS 094 COS 0)3  - -  s i n  0 )4  sin 0)8 

and  this leads us to the  value of Lz, given by  

L3 = ~ 2 0)5}½. {L 1 + L z -  2L1L2 cos 

The length of the  line joining P to the origin is 2 sin 0 
where 

2 sin 0 = {(ha*)2+ (kb*)9"+ (lc*)~+2(kb *) (lc*) cos a* 

+ 2(ha*) (lc*) cos fl* + 2(ha*) (kb*) cos ?*}½ 

and we can thus determine 0)6 in the  range 0 <0)6 <½~r 
from 

sin 0)6 = L3/2 sin 0 ; 

we can also determine 0)7, in the range 0 < 0)7 < 2 ~  
from 

sin 0)7 = (L1 sin 0)3 + L2 sin 0)4)/L3 

cos 0)7 = (L1 cos 0)3 + L2 COS 0)4)/L3 

and we have thus  located the  normal  to the  reflecting 
plane by  a poin t  in the  upper  hemisphere of our 
stereogram. 

In  the  nex t  three sections we proceed to determine 
the direct ion cosines of the  incident  and reflected rays 
for three widely used camera geometries. We do this  
by considerat ion of the  physical  condit ions these rays 
must  sat isfy;  two condit ions which must  always be 
satisfied are:  

(1) The incident  r ay  I ,  the  normal  to the  reflecting 
plane P,  and the reflected r ay  R are coplanar  and  
so will always lie on a great  circle. 

(2) The angles P A I  and P A R  will always be equal 
to ½7~-0 so t h a t  I and R will lie on a small 
circle of radius ½ ~ - 0  about  P.  

These two condit ions alone are insufficient to deter- 
mine the  directions of the  rays, and a th i rd  condit ion 
is always in t roduced by the par t icular  type  of camera 
in use, as described below. 

3a .  T h e  e q u i - i n c l i n a t i o n  c a m e r a  

The extra  condit ion in this case is t h a t  the angles 
Z " I  and Z " R  are equal, being in fact  ½z- /z  where 
# is the  equi- incl inat ion angle; this condit ion implies 
t ha t  I and  R lie on a small circle of radius ½~-/z 
about  Z, as shown in Fig. 3(a). 

M. W E L L S  

Fig. 3(a). The reflection geometry of the equi-inclination 
Weissenberg camera. 

This, and the obv ious  symmet ry  of Fig. 3(a) such 

t h a t  the  angle Z P R  = Z P I  = ½z~ enable us to solve for 

from 
w s = Z " I = Z " R  in the range 0<098 _< ½z 

cos w8 = cos 096 sin 0 ; 

and we can then  use this to solve for wg, again in the 
range 0 < 099 _< ½n, from 

cos (09 = (sin 0 - cos 096 cos eos)/(sin 096 sin 098) . 

We are now in a posit ion to write down the  direction 
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cosines of the  inc iden t  and  ref lec ted rays  which  will 
be g iven  by  the  fol lowing scheme- 

cos X ^ I  = sin cos {cos (CO7--cO9)} 
= sin cos (cos co7 cos co9 + sin w7 sin co9) 

cos Y ^ I  = sin cos {cos (½~-coT-co9)} 
= sin cos (sin co7 cos 0 )9 -cos  ~07 sin co9) 

COS Z^I  = COS 098 

COS 0)8 

COS X ^ R  -~- s i n  (_1)8 {cos  (co7-}-0)9)} 
= sin cos (cos coy cos 0 ) 9 - s i n  0)7 sin 0)9) 

cos r ^ R  = sin {cos (co +co0-½ )} 
= sin cos (sin coy cos 0)9 + cos co7 sin to0) 

cos Z ^ R  = cos0)s 
COS 0)8 

3 b .  T h e  n o r m a l - b e a m  c a m e r a  

The ex t ra  cond i t ion  now is t h a t  the  inc iden t  r a y  is 
a lways  n o r m a l  to  OZ i.e. i t  lies on the  p r imi t ive  circle 
of the  s te reogram;  the re  are now two possible posi t ions  
for the  inc iden t  ray ,  deno ted  by  I ,  I '  in  Fig. 3(b), 
cor responding to ref lect ions to  the  lef t  and  r igh t  h a n d  
side of the  inc iden t  r a y  respec t ive ly  ( tha t  is when  
viewed looking towards  the  source). The  o ther  pos- 
s ib i l i ty  is t h a t  there  are no in tersect ions  of the  smal l  
circle and  the  p r imi t ive  circle; th is  corresponds to  a 
ref lect ion which  does no t  appea r  on a n o r m a l  beam 
pho tog raph .  

x ! 
F i g .  3(b). T h e  r e f l e c t i o n  g e o m e t r y  o f  t h e  n o r m a l  

beam camera. 

The  angle  IZP  (which is not ,  in general ,  equal  to  

RZP) is g iven  by  

COS 0)9 = sin 0/sin 0)6 

a n d  th is  will  be grea ter  t h a n  1 if no ref lect ion is pos- 
sible;  th i s  can be de tec ted  by  the  compute r  and  
app rop r i a t e  ac t ion  t aken .  The  two sets of d i rec t ion  
cosines for the  inc iden t  beams I ,  I '  are found  f rom 
co7 _+ co9 to  be 

cos X ^ Y = cos (o~7-co0) 
= cos o)7 cos co0 + sin co7 sin co9 

cos Y ^ I  = sin (co~--co9) 
= s i n  o)7 c o s  (2)9 - -  c o s  0)7 s i n  0)9 

cos Z^ I = 0 
= 0  

wi th  corresponding expressions for I '  ob t a ined  by  
revers ing the  sign of co9. 

The angle  a t  P in the  t r iangle  IPZ  is g iven  b y  

c o s / 3 = t a n  0 cot co6= (sin 0 cos co6)/(cos 0 sin co6) 

and  we can use the  supp lemen t  of th is  angle in ZPR 
to  eva lua te  ws in  the  range  0 < cos _< ½g f rom 

cos 0)s = cos w6 sin 0 + sin 0)6 cos 0 cos/3  
i.e. 

cos 0)8 = 2 cos co6 sin 0 .  

This  resul t  will app ly  to  b o t h  of the  ref lec ted beams  
and  for a g iven  va lue  of 1 is i n d e p e n d e n t  of 0, which  
we know to  be the  case; i t  is as conven ien t  however  
to eva lua te  i t  afresh for each reflect ion.  We  can now 

solve for the  angle  PZR f rom 
^ 

cos Z = (sin 0 - cos co6 cos cos)/(sin cos sin cos) • 

:Now, f rom the  values  of co7 _+ Z we can form the  direc- 
t ion  cosines scheme for R and  R "  

cos X ^ R  = sin cos 

= sin cos 

cos Y ^ R  = sin cos 

= sin ws 

COS Z^R ---- COS COS 

= COS 098 

{cos + 2)} 
(cos w~ cos Z - s i n  w7 sin 

{cos (co  + 2 z 
(sin w7 cos Z + cos co~ sin Z) 

wi th  a c o r ~ s p o n d i n g  set  for R '  found  by  revers ing  

the  sign of Z. 
The  two posi t ions  for ref lect ion correspond to  two  

di f ferent  spots on the  film, or two di f ferent  pos i t ions  
of the  c rys ta l  and  counter ,  a n d  the  absorp t ion  correc- 
t ions  for the  two mus t  be eva lua t ed  separa te ly .  

3 c. T h e  p r e c e s s i o n  c a m e r a  

The ex t ra  cond i t ion  for the  precession camera  is t h a t  
the  inc iden t  beam lies on a smal l  circle of r ad ius /~ ,  
the  precession angle,  d r awn  a b o u t  Z the  p ro jec t ion  
axis, as is shown in Fig. 3(c). I t  is also a p p a r e n t  f rom 
this  t h a t  the  an t i -equ i - inc l ina t ion  a r r a n g e m e n t  is a 
special  case of the  precession camera  a r r angemen t .  

We  can eva lua te  cos colo f rom 

cos Wl0 = (sin 0 - cos c0s cos ~t)/(sin cos sin # ) .  

This  m a y  be grea ter  t h a n  u n i t y  in cer ta in  s i tua t ions  
corresponding to non-ex i s t en t  ref lect ions;  as before we 
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Fig .  3(c). The  re f lec t ion  g e o m e t r y  of t he  precess ion camera .  

can de tec t  these  cases and  p r e v e n t  the  p roduc t i on  of 
' correc t ions '  for impossible  reflections.  

The  use of 097_+wlo enables  us to eva lua te  the  
d i rec t ion  cosines of the  inc iden t  rays  I1 and  I~; 
obv ious ly  

cos Z ^I1 = cos Z ^I2 = cos # 
and  so 

cos X^I1 = sin # {cos (co7+wlo)} 
= sin # (cos ~7 cos O~1o--sin w7 sin ~1o) 

cos Y^I1 = sin # {cos (½~r-coT+wlo)} 
= sin # (sin co7 cos ~1o + cos ~7 sin ~1o) 

cos Z^I1 = cos/~ 
COS 

wi th  a s imi lar  set for 12 found  b y  revers ing  the  sign 
of O~1o. 

To de t e rmine  the  d i rec t ion  cosines of the  ref lec ted  
rays  we proceed by  eva lua t ing  the  d i rec t ion  cosines 
of the  reciprocal  la t t ice  po in t  P :  

cos X ^ P = cos o~s = sin c06 cos o~7 

cos Y^P=cos w 9 = s i n  w6 sin w7 • 

Using these we can f ind the  angles w11, w12 in Fig. 3(c) ; 

cos wll  = (cos X^I i - s in  0 cos ws)/(cos 0 sin ms) 

cos o912 = (cos Y^I1-  sin 0 cos w9)/(cos 0 sin wg) . 

The  supp lements  of these  angles lead  to  an  express ion 

cos X ^ E l  = cos ogs sin 0 - sin cos cos 0 cos wll  

= 2 cos ws sin 0 - cos X ^11 

a n d  s imilar  reasoning  gives t he  scheme below for the  
d i rec t ion  cosines" 

cos X^EI=2 cos ms sin 0 - c o s  X^I1 
cos Y^EI=2 cos co9 sin 0 - c o s  Y^I1 
cos Z^E1 = - (1 - cos 2 X^E1-  cos 2 X^E~) ½ 

wi th  a s imilar  set for the  emergen t  ray .  

These two sets of inc iden t  a n d  ref lec ted  rays  cor- 
r espond  now to the  same ref lec t ion on the  film, and  
the  t rue  correc t ion  to  be appl ied  is t he  a r i t h m e t i c  
m e a n  of the  two separa te  correct ions.  

4. T h e  ef fec t  of  a b s o r b i n g  s p e c i m e n  conta iners  

I f  t he  spec imen is m o u n t e d  a t  t he  cent re  of a cylin- 
dr ica l  con ta ine r  of d imens ions  large compared  wi th  
those  of the  specimen t h e n  the  effect  of abso rp t ion  
in the  con ta ine r  will  be i n d e p e n d e n t  of pos i t ion  in  
rec iprocal  space and  so for m a n y  purposes  can be 
ignored.  

A more  usual  s i t ua t i on  is shown in  Fig.  4, where the  
specimen is no t  a t  t he  centre  of t he  conta iner ,  and  
occupies an  apprec iab le  f rac t ion  of the  t o t a l  vo lume;  
in th is  case abso rp t ion  by  the  con ta ine r  produces  
effects which  depend  on the  d i rec t ion  of the  ref lect ion.  

Suppose  r0 is a po in t  on the  axis of t he  cyl inder ,  
whose d i rec t ion  is specified by  a un i t  vec tor  t ;  t he  
equa t i on  to  the  surface of the  cy l inder  is 

{ ( r -  r0). t} 2 + a  2= ( r -  r0) ~ , 

where a is the  rad ius  of the  cyl inder .  

Fig.  4. Cross sec t ion  of a c rys t a l  in a n  a b s o r b i n g  cy l indr ica l  
con ta ine r ,  w i t h  abso rb ing  l iqu id  b e t w e e n  t h e  face A B  a n d  
the  con ta ine r .  

A r a y  a long the  d i rec t ion  s t h r o u g h  a po in t  r l  
w i th in  the  specimen is 

r - -  r l  = k s  

and  will  in te rsec t  t he  cyl inder  a t  po in t s  where  

{(ks + r l  - ro). t} 2 + a 2 = (ks + r l  - ro) 2. 

This  is a quadra t i c  in k;  

k2{(s, t ) 2 - 1  } + 2k{s.  t ( r l -  ro). t - ( r l -  ro). s} 
+ { ( r l -  ro). t} 2 -  ( r l -  ro) 2 + a 2 = 0 .  

There  are two solut ions  to th is  equa t ion ,  one wi th  k 
negat ive ,  cor responding  to  the  in te r sec t ion  of the  
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continuation of the ray  and the cylinder as at  Q in 
Fig. 4, and one with k positive; it is in this solution 
tha t  we are interested. The actual path length of the 
ray  within the container will be given by the dif- 
ference between the two positive roots of the equations 
using the inner and outer radius; thus if 

X = ( s . t ) ~ - -  1 

Y = {s. t ( r l - -  ro). t -  ( r l -  ro). s} 
A,,o = { ( r l - ro ) . t }~- ( r l - ro )Z+a~ ,o  

the path  length will be 

ko-k~= {(r2-AoX)~-(r~-A~X)~}/X 
If there is an absorbing liquid trapped between one 
face of the specimen and the inner wall of the container 
then it  becomes necessary to evaluate k, and to sub- 
t ract  from this the path length within the crystal to 
the face to give the path length within the liquid; 
this need only be done for those rays which enter or 
leave by the face AB. 

tha t  by taking the integer next above 4 tit. in a given 
direction as the number of sampling points in tha t  
direction results are produced which agree to within 
ca. 3% of the true value, which can be evaluated 
analytically for certain special cases; this rule ob- 
viously fails where tit. <0.125! The relative values of 
the corrections will, in general, be more accurate than 
their absolute values and except in work where ab- 
solute intensities are required it is the relative values 
which are important.  A further check on accuracy 
has been made by measuring the changes in intensity 
when a crystal is rotated about the normal to the 
reflecting plane and comparing these with the changes 
in absorption correction; this work, carried out by 
Dr D. C. Phillips at the Royal Institution, is to form 
part  of a separate publication. 

The time per reflection increases approximately 
linearly with the product of the number of sampling 
points and the number of faces. A typical case, for 
660 reflections, with 120 sampling points in a crystal 
with 6 faces, required 40 rain. computer time. 

5. D i s c u s s i o n  

The programs described above are all used to compute 
approximations to the value of the absorption correc- 
tion by evaluating a weighted sum; it is of interest 
to know how accurate the approximation is and under 
what circumstances the method will fail. 

The accuracy will natural ly depend on how many 
sampling points are used, and it is perhaps worth 
noting tha t  there are no limits to the accuracy other 
than those imposed by purely practical considerations 
- h o w  long the computation would take and, more 
important,  how accurately the size and shape of the 
crystal can be described. One limitation is that  the 
crystal may  not have re-entrant angles if the method 
of Busing & Levy is used for determining path lengths 
within the specimen. I t  has been found empirically 
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